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ABSTRACT: We achieved two types of laser emissions from
aqueous quantum dots (QDs) using the same high-Q-factor
optofluidic ring resonator (OFRR) platform. In the first type, 2
μM QDs were in bulk buffer solution that filled the entire OFRR
cavity volume. The lasing threshold was 0.1 μJ/mm2, over 3
orders of magnitude lower than the state-of-the-art. In the
second type of laser, the QDs were immobilized as a single layer
on the interface between the OFRR inner wall and buffer
solution with a surface density as low as 3 × 109−1010 cm−2. The
lasing threshold of 60 μJ/mm2 was achieved. In both bulk
solution and single-layer lasing cases, the laser emission persisted
even under 5−10 min of uninterrupted pulsed optical excitation that was well above the corresponding lasing threshold,
indicative of high photostability of the QD laser. This was in sharp contrast to organic-dye-based lasers, which underwent quick
photobleaching during the laser operation under similar pumping conditions. Theoretical analysis is also carried out to elucidate
the advantages of QD-based optofluidic lasers over those based on dyes. Our work opens the door to a plethora of applications
where optofluidic QD lasers can replace dye-based optofluidic lasers in biosensing and on-chip miniaturized laser development.
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Optofluidic lasers have recently emerged as exquisite new
tools for biosensing applications.1−3 Optofluidic laser

biosensors contain the fluorescently labeled analytes as an
integral part of the laser gain medium. Benefiting from the high
sensitivity of stimulated emission to small perturbations in the
laser cavity and gain medium, optofluidic laser biosensors have
been applied to DNAs,4−7 proteins,8 cells,9,10 and tissues11,12 to
reveal subnanometer conformational changes in biomolecules,4

distinguish small thermal dynamic differences between two
biomolecules,5,6 analyze structures and morphologies of cells
and tissues,10−12 and detect biomarkers at extremely low
concentrations (∼1 fg/mL),13 all of which cannot easily be
achieved with standard fluorescence techniques based on
spontaneous light emission. Optofluidic lasers with the gain
medium both in bulk solution4−6,8,9 and on solid/liquid
interfaces14 have been realized, which is analogous to the
traditional fluorescence detection that can be carried out in
both bulk solution and on solid/liquid interfaces.
To date, organic dyes have been the most commonly used

gain medium for optofluidic lasers. However, organic dyes
suffer severely from photobleaching, which makes it very
challenging to perform repetitive measurements with long
exposure time. The photobleaching issue is exacerbated when
the dyes are part of the laser as gain medium and involved in
laser emission, where the intracavity light intensity can be even
higher. In addition, organic dyes are sensitive to solvent
conditions (such as pH, polarity, and ionic strength), making it
less attractive when used in different biological systems. In
contrast, semiconductor quantum dots (QDs) come together

with unique advantages over organic dyes. Core/shell
structured QDs can be engineered with optimized passivation
layers to achieve monodisperse sizes while possessing high
resistance to photobleaching and high quantum yields in the
presence of water and other harsh solvents (high acidity,
basicity, and salt concentration, etc.).15−18 In addition, QDs
have high absorption cross sections,19−21 which is critical for
lasing with low pump intensities. Furthermore, QDs have broad
absorption bands and their emission wavelength can be tuned
by simply changing their size or composition; different colors of
fluorescence can be obtained using the same excitation source.
Therefore, QDs have increasingly been used as alternatives to
organic dyes for biosensing, imaging, and ion detection
applications.22−24

Since their invention, QDs have been explored as laser gain
medium.25−31 In those lasers, QDs either form a relatively thick
solid film25 or are embedded in a solid matrix (such as silica26

and polymer32). Only a few demonstrations have employed
QDs in a solution as laser gain medium.33−35 The first solution-
based QD laser was reported in 2002 using hexane as the
solvent.33 This work was followed by a very recent work that
utilized QDs in toluene as the laser gain medium.35 Lasing
threshold fluences on the order of hundreds of μJ/mm2 were
achieved in these demonstrations. For bioanalysis applications
lasing from aqueous QDs with low lasing thresholds is of
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critical importance. Unfortunately, to the best of our knowl-
edge, only one related work was reported to date in which
lasing was observed from QDs dissolved in glycerol/water
microdroplet resonators trapped by an electrodynamic trap.34

However, the droplet-based laser cavity suffers from sample
evaporation, cavity deformation, and lack of microfluidics for
sample delivery. Each droplet needs to be prepared separately
with poor size and shape control. Therefore, it is difficult to use
droplets as practical devices for repetitive and consistent
measurements over a relatively long time. In addition, due to
the relatively low Q-factor, a high lasing threshold over 400 μJ/
mm2 was needed.
In this paper we achieved low-threshold lasing emission from

aqueous QDs when they were in bulk aqueous solution or
immobilized as a single layer on the interface between a solid
substrate and aqueous solution. Due to the excellent Q-factor of
the optical cavity and the high fluorescence quality of the QDs,
a lasing threshold fluence of 0.1 μJ/mm2 was obtained for QDs
in bulk solution with a concentration as low as 2 μM, 3 orders
of magnitude lower than the state-of-the-art with a similar QD
concentration. For QDs immobilized as a single layer with a
surface density as low as 3 × 109−1010 cm−2, the lasing
threshold was 60 μJ/mm2. In both cases, the QD lasing
persisted even under uninterrupted pulsed pumping with 3.5−
10 times the lasing threshold fluence for 5−10 min, showing
significantly higher resistance to photobleaching than organic
dyes, which started to photobleach almost instantaneously
upon laser operation under similar pumping conditions. Our
work opens the door to a plethora of studies where QDs are
used as optofluidic laser gain medium for the development of
new types of lasers and for bioanalysis in bulk solutions or at
solid/liquid interfaces.
The laser cavity used in our work was an optofluidic ring

resonator (OFRR) based on a thin-walled fused silica capillary.
The fabrication and characteristics of the OFRR have been well
studied in the past few years.36−39 Briefly, an OFRR with an
inner diameter of 70−90 μm and a wall thickness of 1−2 μm
was obtained by rapidly stretching a fused silica preform under
CO2 laser illumination.36,37 The circular cross section of the
capillary forms the ring resonator that supports the high-Q
(>107) whispering gallery modes (WGMs).38−40 The OFRR is
a very versatile cavity that can accommodate liquids with
various refractive indices.39,41 When the gain medium is in
liquid having a refractive index lower than that of glass, the
WGM is mainly confined within the capillary wall, but has an
evanescent field present inside the capillary to provide optical
feedback for the gain medium to lase (Figure 1A). On the other
hand, when the liquid has a higher refractive index, the WGM
exists mainly in the liquid, which also provides optical feedback

for lasing. Furthermore, the WGM can interact with a single
layer of gain molecules at the solid/liquid interface (Figure
1B).14 For the present work, in which QD lasing occurs in an
aqueous environment (water refractive index ∼1.33 at visible
wavelengths), we utilized the OFRR’s first and third properties
described in Figure 1A and B.
A commercially available QD solution in aqueous buffer

(Invitrogen Qdot 655; CdSe/ZnS quantum dots; 2 μM in
borate buffer; 8 × 15 nm average QD dimensions42−44) was
used in the experiments. A representative TEM image of the
QDs used in this study is shown in Figure S1 in the Supporting
Information. Amine-to-amine cross-linking was used for surface
immobilization of the Qdot 655 QDs on the inner surface of
the OFRRs. Details of this procedure are described in the
Supporting Information. Optical experiments were performed
using a confocal setup to excite OFRRs with a pulsed optical
parametric oscillator (OPO) (repetition rate: 20 Hz, pulse
width: 5 ns) (Figure 1C). An excitation wavelength of 433 nm
was used in all the QD experiments. A 25 mm focal distance
plano-convex lens was used for focusing the excitation beam at
a 0.65 mm spot on the OFRRs (spot size measurement is
detailed in the Supporting Information) and collecting the
OFRR laser emission. A spectrometer (Horiba 550) and a
CCD camera were used for spectral detection of the OFRR
laser emission signals.
The inset of Figure 2 shows the emission spectra recorded at

various pump intensities from an OFRR filled with a 2 μM QD

solution in borate buffer. These measurements and all other
measurements reported in this paper were performed in the
absence of liquid flow, when the gain medium was kept still
inside the OFRR. At a low pump intensity, only spontaneous
emission is observed. With increased pump intensity, multiple
lasing peaks emerge at the red side of the QD emission band.
Multimode lasing is intrinsically observed with ring resonators
unless additional mechanisms such as the Vernier effect are
employed to ensure single-mode operation.45 An analysis of the
power-dependent spectral intensity for the lasing region
between 660 and 665 nm plotted in Figure 2 reveals a lasing

Figure 1. Illustrations of aqueous QDs (A) in solution inside an
OFRR and (B) immobilized as a single layer on the inner surface of an
OFRR. Qualitative sketches of radial dependence of WGM intensity
are also shown in (A) and (B). (C) Illustration of the experimental
setup using confocal geometry.

Figure 2. Spectrally integrated intensity as a function of pump
intensity for laser emission (squares) and fluorescence (circles) for 2
μM aqueous QDs in borate buffer solution. Spectral integration takes
place in the range 660−665 nm for lasing and 650−655 nm for
fluorescence. The lasing threshold is 0.1 μJ/mm2 per pulse. Insets
show examples of emission spectra below and above the respective
lasing threshold. Error bars are obtained with three measurements.
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threshold fluence of 0.1 μJ/mm2. In contrast, the nonlasing part
(650−655 nm) of the QD emission spectrum increases
sublinearly, and saturation occurs at increased pump intensities.
In Figure 2, a red shift of almost 10 nm is observed between the
lasing intensity maximum and the spontaneous emission peak.
This is attributed to self-absorption, consistent with the
previous experiments with dye lasers39,46 or semiconductor
quantum well lasers.47

The observed lasing threshold is over 3 orders of magnitude
lower than for the previously reported optofluidic laser (440−
530 μJ/mm2) using aqueous microdroplet resonators that
contained similar QD concentrations (1.3−2.6 μM).34 Such
significant improvement is due to the excellent Q-factor of the
OFRR (∼107).38,39 The observed lasing threshold is also much
lower than lasing threshold values reported in the OFRR laser
demonstrations using organic dyes and green fluorescent
proteins of similar concentrations (2−10 μM, 20−100 μJ/
mm214,39), as the high absorption cross section at the pump
wavelength of the QDs contributes to the significant reduction
in the lasing threshold in the QD laser. Note that an extremely
low lasing threshold (on the order of 1 μJ/mm2) has also been
achieved recently with densely packed thick QD films.31

However, this demonstration required a QD density over 1000
times higher than in our case (interparticle distance: <10 nm vs
∼100 nm in our case).
In order to understand the optofluidic QD laser, we write the

threshold condition considering contributions due to multi-
excitons within a QD.48 We assume that filling of multiexciton
states in a QD is governed by Poisson distribution. P(N) =
⟨N⟩N e−⟨N⟩/N! gives the probability of having N excitons in a
given QD where ⟨N⟩ represents the average number of
photogenerated excitons. For our relatively large, rod-like QDs,
exciton−exciton interactions are much smaller than the
emission bandwidth of around 80 meV. Assuming contribu-
tions from all multiexcitonic emission bands (single exciton,
biexciton, triexciton, etc.), the lasing threshold condition can be
written as
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where nT is the total concentration of the QDs, σe,X(λL) and
σe,XX(λL) are the single exciton and biexciton stimulated
emission cross sections, σa(λL) is the absorption cross section
at the lasing wavelength (λL), η is the fraction of light in the
evanescent field of the OFRR, Q0 is the OFRR empty-cavity Q-
factor, and m is the refractive index of the cavity mode (m ≈ 1.4
for the OFRR).
The stimulated emission cross section of a laser transition

can be related to the fluorescence lifetime (τF) by the following
equation:49
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where E(λL) is the fluorescence quantum distribution, nL is the
medium refractive index at λL, and c is the speed of light in a
vacuum. For single exciton and biexciton emissions, the
stimulated emission cross sections are determined by the
radiative lifetimes of the transitions from the single exciton state

(|X⟩) to the ground state (|0⟩) and two electron−hole pair state
(|XX⟩) to |X⟩, respectively. Due to the 2-fold degeneracy of the
1S electron state, we can expect the radiative lifetime of the
biexciton emission to be half of the radiative lifetime of single-
exciton emission.50 Based on eq 2, this implies the stimulated
emission cross section for biexciton emission to be 2 times that
of the single-exciton emission at a given emission wavelength,
independent of the nonradiative Auger process decay rate. For
this reason, in eq 1 the absorption of |0⟩ is also considered to
be 2 times larger than the absorption of |X⟩. After substitutions
of σe,XX(λL) = 2σe,X(λL) and normalization condition of the
Poisson distribution (∑i = 0

∞ P(i) = 1), eq 1 can be written as
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Using the experimentally measured data for the single-
exciton transition, i.e., nL = 1.33, E(λL) = 0.0038 nm−1 (see
Supporting Information for detailed calculation), and τF = 33
ns, we estimate σe,X(λL) at λL = 665 nm to be σe,X(λL) = 1.7 ×
10−17 cm2 for our QDs, revealing the stimulated emission cross
section for biexciton gain of σe,XX(λL) = 3.4 × 10−17 cm2. This
number is slightly smaller than the stimulated emission cross
sections of good laser dyes (σe(λL) ≈ 1 × 10−16 cm2)51 and
conjugated polymers (σe(λL) ≈ 5 × 10−17 cm2)52 and is
comparable with the previous number obtained for biexciton
gain in nanocrystal QDs.27 Using other experimental
parameters (m = 1.4, σa(665nm) = 4.3 × 10−16 cm2, nT = 1.2
× 1015 cm−3, and ηQ0 = 1 × 10739,53), eq 3 becomes

= + ⟨ ⟩ × −⟨ ⟩N0.6758 (13.6471 6.8235 ) e N
(4)

revealing the number of average excitons per QD as ⟨N⟩ = 4.1.
Considering the QD absorption cross section at the pump
wavelength (σa(433 nm) = 347 × 10−16 cm2), and neglecting
cavity-enhanced absorption effects, ⟨N⟩ = 4.1 corresponds to a
theoretical threshold fluence of Φth = 0.54 μJ/mm2,54 which is
slightly larger than the experimentally observed threshold
fluence of 0.1 μJ/mm2. Hence, we conclude that the overall QD
gain that we observed experimentally is larger than our
predictions. We attribute the difference between the observed
and predicted threshold pump intensities to the quasi-one-
dimensional nature of the rod-like QDs that we studied. In such
QDs, the absence of quantum confinement in one dimension
leads to an overall better optical gain performance.55−58 We
should also note that all our derivations in this paper assume
steady-state conditions, which usually result in a higher
threshold estimation. Accuracy of our predictions can be
further increased by direct numerical solution of the rate
equations.
Based on eq 3, the minimum QD concentration necessary for

lasing can also be calculated by setting P(0) = P(1) = 0, i.e.,

π
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representing a very high pumping regime where ⟨N⟩ ≫ 1. For
parameter values assumed in our calculations, the minimum
concentration for QD lasing is obtained as nT‑min = 0.65 μM. It
is important to emphasize that despite the fact that very low
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threshold lasing can be achieved with relatively low Q-factor
resonators,31 lasing with low QD concentrations (∼1 μM) can
only be achieved with a high-Q-factor resonator such as the
OFRR.
We note that compared to the laser dyes (σa(λP) ≈ (1−10) ×

10−16 cm2 and σa(λL) ≈ 10−19 cm2),51 the absorption cross
sections of our QDs at λP and λL are at least ∼2 orders of
magnitude higher, which, together with the good stimulated
emission cross section of our QDs and excellent Q-factors of
the WGMs in the OFRR, is the main reason behind the
observed ultralow threshold lasing. A large absorption cross
section is an intrinsic property of the QDs related to their size,
which is much larger than the size of an organic dye
molecule.19−21 In addition, our QDs have a rod-like geometry
that further increases the absorption due to the behavior of
their shell as an efficient antenna.20,21

Figure 3A and B show the photostability of lasing intensity
obtained from 2 μM aqueous QDs kept still inside the OFRR

during 10 min (12 000 pulses in total) of uninterrupted
pumping with a constant intensity of 1.06 μJ/mm2 (∼10× the
lasing threshold). Spectra recorded during this time show no
clear sign of photobleaching. The slight laser emission
fluctuations can be mainly attributed to the fluctuations in
the OPO output pulse energies. In contrast, photostability
during such a long period of time cannot be achieved with a
liquid dye laser when the liquid is kept still inside the laser
cavity. Figure 3C and D show the results of our control
experiments performed using a 10 μM fluorescein dye solution
in water at an excitation wavelength of 493 nm and intensity of
1.82 μJ/mm2 (2.5× the lasing threshold). Upon continuous
pumping, the dye lasing intensity exhibits a relatively quick
decrease (50% decrease within 30 s). Dye lasing is almost

completely lost at around 4 min. Hence, the QD laser has
significantly better photostability than the dye laser.
Not only have QDs been used for biosensing in bulk

solution, they have also been used to perform biosensing where
biological recognition (such as molecular binding) and
detection take place at the interface between a solid substrate
(such as glass) and aqueous solution. Therefore, in order to use
QD lasers for surface-based biosensing in the future, it is critical
to achieve QD lasing when they are immobilized on the surface.
QD lasing from a very thick layer (0.5−1 μm) coated on a
cylindrical ring resonator surface has previously been
demonstrated.29 However, this type of QD laser is not suitable
for biosensing, as only the QDs on the topmost surface can be
used for biosensing, and the remaining QDs underneath are not
utilized, but simply contribute to the background.
Here, we employed surface immobilization biochemistry to

attach a single layer of aqueous QDs on the inner surface of the
OFRR (see the Supporting Information for details). After
rinsing, the OFRR was subsequently filled with PBS buffer.
Upon optical pumping, photostable QD lasing was observed as
shown in Figure 4. As compared to the results presented in
Figures 2 and 3 using aqueous QD solutions, the surface QD
lasing threshold increases ∼600-fold to 60 μJ/mm2 and the
center lasing wavelength blue-shifts by 10 nm to ∼655 nm, very
close to the QD fluorescence peak position. Both of these
observations indicate a considerably smaller number of QDs
coupled to the WGMs and are consistent with the dye laser
behavior when the dye concentration is lowered.39,59,60

However, despite the extremely high pumping intensity (199
μJ/mm2, 3.5× higher than its threshold and ∼200× larger than
used in the bulk QD laser stability test in Figure 3), Figure 4B
and C show that good photostability is still observed over the
duration of 5 min (6000 pulses in total), more than enough for
many biosensing applications. In comparison, dye and
fluorescent proteins would be photobleached within only a
few seconds under the same experimental conditions.14 We
further note that no indications of thermal degradation (e.g.,
change in the emission band spectral profile) were observed in
our lasing experiments with surface-immobilized QDs. We
attribute this to the relatively low pump repetition rate used in
our experiments.
For the case of surface-immobilized QD lasing, we calculate

the stimulated emission cross section due to biexciton gain at
the lasing wavelength (λL ∼656 nm) to be σe(λL) = 4.3 × 10−17

cm2. Due to the high threshold fluence observed in the case of
lasing with QDs immobilized at the surface, eq 5 can be used to
estimate the effective QD concentration as nT_eff = 0.52 μM. An
upper limit for nT_eff is given by the 2 μM concentration used in
the bulk QD lasing case. Hence, we conclude that for the case
of surface QD lasing 0.52 μM < nT_eff < 2 μM. Considering the
WGM decay length of 100 nm at a wavelength of 656 nm, we
can estimate the QD surface density to be between 3.1 × 109

and 1.2 × 1010 cm−2,14 which corresponds to 0.37−1.44%
surface coverage considering QD dimensions of 8 × 15 nm or
an average interparticle distance of 91−180 nm. We note that
with this low surface density and the inherently small thickness
of the immobilized QD layer determined by the size of a single
QD, the profile of the lasing WGMs should not be significantly
affected by the presence of the QDs at the inner surface of the
OFRR.
By combining the excellent fluorescent properties of the

state-of-the-art core/shell QDs with the unique properties of
the OFRR as an optical cavity, we demonstrated optofluidic

Figure 3. (A) Normalized lasing intensity integrated between 660 and
670 nm from 2 μM aqueous QDs over a duration of 10 min under 20
Hz pumping at an intensity of around 10× threshold (1.06 μJ/mm2

per pulse). Error bars are obtained with three measurements. (B) QD
lasing spectra recorded at t = 0 min and t = 10 min show negligible
photobleaching. (C) Normalized lasing intensity integrated between
520 and 525 nm from 10 μM dye (fluorescein) over a duration of 4.4
min under 20 Hz pumping at an intensity of around 2.5× threshold
(1.82 μJ/mm2 per pulse). (D) Dye lasing spectra at t = 0 min and t =
4.4 min showing almost complete suppression of lasing due to dye
photobleaching.
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QD lasing using aqueous solutions. Our experiments employed
aqueous QDs kept in solution inside the OFRR as well as those
immobilized as a single layer on the inner surface of the OFRR.
Thanks to the high absorption cross section of QDs and
excellent Q-factor of the WGMs in the OFRR, lasing was
achieved at ultralow pump intensities when a bulk QD solution
was used as the laser gain medium. In both cases stable QD
lasing was achieved for durations longer than 5 min, sufficient
for many biosensing applications. Free from limitations posed
by photobleaching, such optofluidic QD lasers are directly
applicable to numerous applications in bioanalysis, where
optofluidic dye lasers have already proven their superiority over
spontaneous fluorescent emission-based measurements.
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